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We numerically investigate the stability of one- and two-dimensional gap solitons for very long propagation
distances both in self-focusing and in self-defocusing nonlinear photonic media. We demonstrate that the
existence of stable solitons in the first gap requires much stronger lattices in a self-focusing than in a self-
defocusing medium. Moreover, we present a one-dimensional linear stability analysis of the fundamental
solitary mode in the first gap considering a self-focusing photorefractive nonlinearity.
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I. INTRODUCTION

During the last years, much attention in nonlinear optics
has been focused on periodic structures such as photonic
crystals �1�. These systems are known to allow linear wave
propagation only if the corresponding wave vectors lie
within certain intervals, the so-called Bloch bands. However,
nonlinear photonic media support spatially localized
structures—usually termed gap solitons—whose wave vec-
tors lie in the gaps between the Bloch bands. Gap solitons
may occur in very different physical systems such as fiber
Bragg gratings �2�, waveguide arrays �3,4�, Bose-Einstein
condensates in optical lattices �5,6�, and optically induced
photonic lattices �7–9�.

There have been several publications in the past regarding
the stability properties of different kinds of gap solitons, both
purely numerical �10� and combined numerical and analyti-
cal �11� ones. These studies reveal a deeper connection be-
tween instabilities and resonances in the Bloch bands caused
by the internal modes of the solitons. However, they consider
only a fixed value for the strength of the photonic lattice. In
this paper we investigate the dependency of the soliton sta-
bility on the lattice strength, comparing self-focusing and
self-defocusing nonlinearities. Additionally, we show that
similar instabilities exist in transversally two-dimensional
systems. We choose a photonic crystal with a saturable, pho-
torefractive nonlinearity as model system. Our results are
applicable—at least qualitatively—to Kerr-type nonlineari-
ties as well, thus they may be transferred to any system that
can be described by a �modified� nonlinear Schrödinger
equation with a periodic potential, such as Bose-Einstein
condensates in optical lattices.

This paper is organized as follows: After a short descrip-
tion of our model in Sec. II, we perform a one-dimensional
�1D� linear stability analysis �Sec. III� and show that there
are no stable self-focusing solitons in the first gap for mod-
erate lattice strengths. After that, we carry out detailed nu-
merical simulations for both focusing and defocusing nonlin-
earities. In Sec. IV we transfer our results to transversally
two-dimensional systems.

II. MODEL

The propapagtion of a light beam through a nonlinear
photonic crystal can be described in two transverse dimen-

sions by the following equation for its slowly varying enve-
lope A�x ,y ,z�:

�zA =
i

2
���

2 + Vm�x,y��A − �
i

2
�Enl��A�2�A . �1�

Herein Vm�x ,y� denotes the static modulation of the refrac-
tive index �photonic lattice�, � is the nonlinear coupling con-
stant, and ��

2 =�xx+�yy is the transverse Laplacian. The sign
factor � has been introduced to determine the character of
the nonlinearity: �= +1 describes a self-defocusing and �
=−1 is a self-focusing medium if Enl�0. Equation �1� has
been made dimensionless by introducing a transversal �x and
y directions� scaling constant w0 and a longitudinal �z direc-
tion� scaling constant z0=kw0

2 �k being the wave vector in the
unperturbed and unmodulated medium�. All numerical simu-
lations in this paper are carried out with �=30, and we con-
sider the continuous, separable modulation

Vm�x,y� = V0 · �cos2��/d · x� + cos2��/d · y�� �2�

with the modulation depth V0 and the grid constant d. We use
d=2w0 in all of our simulations.

Solitary solutions can be obtained by inserting the soliton
condition A�x ,y ,z�=a�x ,y� · exp�i�z� into Eq. �1�; this yields
the relation

�2� − ��
2 − Vm�x,y��a + ��Enl��a�2�a = 0 �3�

which contains the propagation constant �. Since we are
considering slowly varying envelopes, this parameter consti-
tutes an offset to the wave vector in the propagation direc-
tion.

There are several ways of modeling the nonlinearity �i.e.,
the electric screening field� Enl��A�2� of a photorefractive
crystal. The most appropriate one is to derive an expression
for its scalar potential � directly from Kukhtarev’s model
using some well-justified simplifications �12�. Neglecting
diffusion effects this leads to

���1 + �A�2� � �� = − �x�A�2, Enl = − �x� . �4�

Due to the single partial x derivative on the right hand side
Eqs. �4� describe an anisotropic nonlinearity. In the transver-
sally one-dimensional case they can be reduced to
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Enl = �A�2/�1 + �A�2� . �5�

We carry out our 1D simulations using Eq. �5� and our 2D
simulations using Eq. �4�; however, our results do not cru-
cially depend on the exact shape of the nonlinearity.

III. 1D SIMULATIONS

Figure 1 shows the dispersion relation of the Bloch waves
in a 1D photonic lattice; the corresponding modulation po-
tential simply reads Vm�x�=V0 ·cos2�� /d ·x� �cf. Eq. �2��. A
superposition of Bloch waves forms a soliton only if the
nonlinearity of the medium can compensate the curvature of
the dispersion relation. The sign of this curvature changes
within each band, so this can be achieved both for defocus-
ing �solitons bifurcate from the lower band edges� and for
focusing �solitons bifurcate from the upper band edges� non-
linearities. Therefore only in the latter case can solitons exist
in the semi-infinite gap. Since these are nodeless, their sta-
bility can be proven analytically using the Vakhitov-
Kolokolov criterion �13�.

Investigating the stability of solitons within the other band
gaps is more complicated. First we perform a linear stability

analysis by considering the evolution of a perturbed solitary
solution a�x� �11�,

A�x,z� = ei�z
„a�x� + ���v�x� + iw�x��e�z

+ �v�x�* + iw�x�*�e�*z�… . �6�

The corresponding eigenvalue problem reads

�v = − Lw ,

�	 = Lv − ���IEnl�I�a2v, I = �a�2 �7�

with

L � − � +
1

2
��

2 +
1

2
Vm�x� −

1

2
��Enl��a�2� . �8�

In general Eq. �7� can be solved only numerically and by
using large grids since the eigenmodes have very long oscil-
lating tails. We start with a self-focusing fundamental soli-
tary mode in the first gap and a medium lattice strength; the
results are shown in Fig. 2. There are three dominating
eigenmodes, a single-peaked symmetric one �mode I, Fig.
2�b�� and both a symmetric and an antisymmetric double-
peaked one �modes II and III, Figs. 2�c� and 2�d��. Each of
them may become unstable within one or more intervals
�Fig. 2�a��, and the union of these intervals covers the com-
plete first gap.

Therefore these results suggest that in this case there are
no stable solitons at all, but we should bear in mind that the
numerical accuracy of our stability analysis may become
poor within regions of very weak instabilities �i.e., Re���

1�, which we obtain, e.g., around �=2. This is due to the
special symmetry of Eq. �7�: The two eigenvalue equations
can be rewritten as a single one containing only �2, and thus
each eigenmode with Re����0 is actually linearly unstable
since it occurs twice, and once with Re����0. Hence we
have to distinguish these modes from linearly neutrally

FIG. 1. Dispersion relation for the 1D photonic lattice.

FIG. 2. Linear stability analy-
sis of the fundamental self-
focusing ��=−1� solitary mode in
the first gap �V0=13.6�: �a� real
parts of the eigenvalues for the
three dominating unstable eigen-
modes; the numbers in the shaded
bars indicate the modes which
cause the decay of the soliton in
the numerical simulations; �b�–�d�
real �—� and imaginary �--� parts
of v �thick lines� and w �thin
lines� for the modes from �a�; gray
bars in �b�–�d� indicate regions
with a high static refractive index.
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stable ones, and this becomes difficult if Re��� is small.
Thus we try to verify these results by propagating the

corresponding solitary solutions numerically over suffi-
ciently large distances. In order to do this we need a propa-
gation algorithm that is both fast and capable of handling
absorbing boundary conditions since otherwise artificial re-
flections occurring at the grid boundaries might obscure the
soliton decays. We therefore use the technique of perfectly
matched layers �PMLs� �14� in combination with a Hop-
scotch integration scheme applied to Eq. �1� in all of our
simulations.

The results of the simulations are shown in Figs. 3 and 4.
The qualitative agreement between the unstable domains de-
termined from the simulations �shaded bars in Fig. 2�a�� and
those determined from the linear stability analysis is quite
good, smaller deviations occur especially when several
modes with 0�Re���
1 compete. In these cases the accu-
racy of the simulations is usually higher due to the reasons
mentioned above.

As Fig. 2�a� already suggests, mode I from Fig. 2�b� gov-
erns the soliton decay for ��1.7 �Fig. 3� and �
2.5, while
mode II �Fig. 2�c�� dominates for 1.7���2.5 �Fig. 4�, even
if the latter does not seem to be clear from the stability analy-
sis alone. In contrast to the stability analysis the simulations
unveil only a very small interval around �=1 where the in-
fluence of mode III becomes significant, and even there it is
comparable to that of the single-peaked symmetric mode.

The propagation constant of the original soliton shifts dur-
ing the decay from the first towards the semi-infinite band
gap, and the intensity profile converges against a stable fun-
damental soliton having some internal modes excited �Figs.
3�c� and 4�c�, respectively�. Considerable amounts of inten-
sity are radiated by the beam only during the change of �.

Corresponding to the higher values of Re��� the instabil-
ity caused by mode I sets in faster than the one caused by
mode II. Since mode I is symmetric, this instability is sym-
metry breaking, what can be seen clearly from the alternating
intensity oscillations �Figs. 3�b� and 3�d��. The spatial ampli-

FIG. 3. Decay of the fundamental self-focusing ��=−1� solitary mode with �=1.5 �first gap� and V0=13.6 due to the symmetric
eigenmode from Fig. 2�b�: �a� soliton profile, gray bars indicate regions with a high static refractive index; �b� intensity distribution over the
propagation distance; �c� spatial evolution of the mean propagation constant; �d� detailed view of the decay. Dark gray tones in �b� and �d�
indicate high intensities.

FIG. 4. Decay of the fundamental self-focusing ��=−1� solitary mode with �=2 �first gap� and V0=13.6 due to the antisymmetric
eigenmode from Fig. 2�c�; the meaning of �a�–�d� is the same as in Fig. 3.
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tude of these oscillations decreases during the decay �300z0

�z�400z0�, what finally leads to a slightly oscillating fun-
damental solitary mode in the semi-infinate gap, as men-
tioned above. Except for these oscillations, the final structure
is centred around the origin at x=0. For �
2.5 the decay of
these oscillations may last very long, despite the large
growth rate of the initial instability corresponding to Re���.

The values of Re��� for the double-peaked antisymmetric
mode II are very small, therefore the propagation distances
which are necessary to observe the corresponding instability
may be large �Figs. 4�b� and 4�d��. The instability is
symmetry-conserving until the mode from Fig. 2�d� becomes
also excited �z	665z0�, causing a shift of the center of in-
tensity. This shift finally leads to a sudden jump �z	670z0�
of the major part of the beam into the neighboring static
waveguide of the photonic lattice �in Fig. 4 it is the one at
x= +2w0, but the jump could occur in the opposite direction

as well�. Again we have an oscillating fundamental mode at
the end, propagating in the semi-infinite gap.

As it has been shown in �11�, the instabilities we observe
here conincide with resonances in the Bloch bands, which
may occur when at least one of the sidebands �±Im��� of an
internal mode obtained from Eq. �7� lies within a Bloch
band. Since the Bloch bands become narrower the stronger
the photonic lattice is, it seems to be obvious that gap soli-
tons should become stable if the depth of the lattice is high
enough. In order to investigate this in detail, we repeat our
stability analysis and our simulations for different lattice
depths V0. We do not have to vary the lattice constant d,
since the propagation equation �1� can be scaled in such a
way that this is equivalent to changing V0.

The result of this analysis for the self-focusing nonlinear-
ity is shown in Fig. 5�a�. For V0�13.8 all solitons in the first
gap are unstable. For greater values of V0, the solitons with a
high total intensity �i.e., those lying close to the upper egde

FIG. 5. Stability vs lattice depth �d=2� for fundamental solitons in the first gap: �a� self-focusing, �b� self-defocusing nonlinearity.
Shadings: light gray, band gaps; medium gray, stable regions �first gap�; dark gray, unstable regions �first gap�. Dashed lines: potential depths
from �a� Figs. 2–4 and �b� Fig. 6, respectively.

FIG. 6. Decay of the fundamental self-defocusing ��=1� solitary mode with �=−0.3 �first gap� and V0=4.2: �a� soliton profile, gray bars
indicate regions with a high static refractive index; �b� real �—� and imaginary �- -� part of the dominating unstable eigenmode; �c� spatial
evolution of the mean propagation constant; �d� view of the decay. Dark gray tones in �d� indicate high intensities.
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of the gap� become stable; for V0
28 those with a low total
intensity become stable as well. The unstable region finally
ends at V0	90, where also the third Bloch band has become
small. This leads to the conclusion that Bloch bands of
higher than third order do not play an important role for
soliton instabilities in the first gap.

For the largest part of the unstable region in Fig. 5�a�, the
soliton decays are ruled by eigenmodes of type I from Fig. 2.
The other modes become important mainly in a certain inter-

val around the dashed line �i.e., approximately for V0
=13.6±5�.

Interestingly enough the situation is completely different
if one carries out the same analysis for a self-defocusing
medium �Fig. 5�b��. Here we observe stable solitons down to
very weak lattices �V0	1.5 and lower�. Instabilities occur
only in a small range near the lower gap edge �i.e., for soli-
tons with a high total intensity�. They finally disappear for
V0
45, when the second Bloch band has become small. In
contrast to the self-focusing case the unstable regions are
very small, and resonances within the third band do not seem
to occur.

Figure 6 shows the decay of an unstable self-defocusing
soliton with �=−0.3 and V0=4.2. We choose a different po-
tential strength here than in Figs. 3 and 4, since otherwise the
instabilities are very weak. The dominating unstable eigen-
mode is symmetric and leads to an oscillation of the soliton,
but—in contrast to the self-focusing case—its structure is not
destroyed. The propagation constant remains in the first gap,
but it is shifted into the stable regime.

Although we do not discuss the stability of solitons in
higher order gaps in detail here, we mention that there are

FIG. 7. Dispersion relation �left� and irreducible part of the first
Brillouin zone �right� for the 2D photonic lattice corresponding to
Eq. �2�.

FIG. 8. Decay of the two fun-
damental 2D self-focusing ��
=−1� solitary modes with �=5.5
�first gap� and V0=27.2 for the an-
isotropic photorefractive nonlin-
earity. Top: intensity profiles be-
fore ��a�, �c�� and after ��b�, �d��
the decay; middle: cross sections
��e� y-z plane and �f� x-z plane,
respectively�; bottom: real ��g�,
�i�� and imaginary ��h�, �j�� parts
of the dominating unstable eigen-
modes. Dark gray tones indicate
high intensities �a�–�f� or high am-
plitudes �g�–�j�, respectively.
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much higher lattice depths necessary in order to stabilize
them. If they are unstable, the decay is similar to the one of
first-gap solitons in that sense, that it also ends up with a
stable, slightly oscillating fundamental mode in the lowest-
possible gap �i.e., the semi-infinite one for self-focusing and
the first one for self-defocusing nonlinearities�.

The value of the nonlinear coupling constant � does not
seem to have a crucial influence on our results �as long as it
is not too small�. The same holds for the concrete form of the
nonlinearity given by Eq. �5�; we obtain comparable results
for media with a Kerr nonlinearity �Enl��a�2�� �a�2�.

Because of the latter fact there is a close relation between
the system discussed here and Bose-Einstein condensates in
optical lattices �cf. �10,11��, since the propagation equation
�1� with a Kerr nonlinearity is formally equivalent to the
Gross-Pitaevskii equation when one reinterprets the propaga-
tion in the z direction as temporal evolution.

IV. 2D SIMULATIONS

We now investigate how far these results may change
when we consider two transverse dimensions. Figure 7

shows the dispersion relation and the irreducible part of the
first Brillouin zone for the corresponding 2D photonic lattice
as it is given by Eq. �2�.

At first we again consider the fundamental self-focusing
solitary modes in the first gap. As it can be seen from the
Figs. 8�a� and 8�c�, their shape is just the simplest possible,
spatially localized 2D extension of the corresponding 1D
modes. As a consequence of the anisotropy of our model, we
now have to distinguish between two orientations �horizontal
and vertical� of the solitons. Figure 8 shows that also in this
case a slowly growing instability corresponding to a single-
peaked symmetric unstable eigenmode exists. Consequently,
when viewed in the y-z or x-z plane, respectively �Figs. 8�e�
and 8�f��, the decay has many similarities with Fig. 3�b�. It
also starts with a slowly increasing, alternating pulsing due
to the symmetry breaking and ends up with a slightly oscil-
lating fundamental solitary mode in the semi-infinite gap
�Figs. 8�b� and 8�d��. This kind of decay is the only one
which we observe for the 2D system. Again, the solitons
become stable for very strong lattices �factor 2¯5 stronger
than in Fig. 8�.

The vertically oriented mode has a slightly lower total
intensity than the horizontally oriented one, and the decay
sets in a little later. We observe this “correlation” between
total intensity and the growth rate of the instability in many
of our 2D simulations. It also exists in the 1D case when the
fundamental, symmetric unstable eigenmode �mode I from
Fig. 2� dominates over the complete first gap.

Like in the 1D system, self-defocusing solitons may be
stable for much weaker lattices than self-focusing ones.
When we use the same lattice strength as in Fig. 8, we ob-
serve instabilities only for very low �left column of Fig. 9�
and for very high �right column of Fig. 9� soliton instensities.
The latter are already known to us from the 1D case �cf. Fig.
6�: the structure of the soliton is not destroyed but starts to
oscillate, and the propagation constant is shifted towards the
stable region. Due to the anisotropy of our model the oscil-
lation takes place in the y direction, i.e., the upper and the
lower spot appear and disappear periodically �cf. the pictures
at z=2098z0 and z=2100z0 in the right column of Fig. 9�.
Consequently, the real part of the corresponding unstable
eigenmode has two maxima at y= ±2w0.

However, the instability near the upper egde of the first
gap �left column of Fig. 9� seems to occur only in the 2D
case. In contrast to all other instabilities we discussed in this
paper, it is of a nonoscillatory type and it does not lead to the
formation of a new, stable soliton; the beam rather diffracts
strongly after a certain propagation distance. A slight incre-
ment of the soliton intensity �that means, raising the propa-
gation constant a little� is sufficient to stabilize the structure,
as shown in the middle column of Fig. 9.

V. CONCLUSIONS

In this paper we presented a numerical investigation of
the stability properties of gap solitons, whereas we consid-
ered the first gap in detail. We compared self-focusing and
self-defocusing nonlinearities and we demonstrated that in

FIG. 9. Upper part: propagation of the 2D fundamental defocus-
ing ��=1� solitary mode for three different values of � �7.3, 7.2,
and 5.5� in the first gap �V0=27.2� for the anisotropic photorefrac-
tive nonlinearity; lower part: dominating unstable eigenmodes. The
mode shown in the middle column is stable. Dark gray tones indi-
cate high intensities �upper part� or high amplitudes �lower part�,
respectively.
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the former case gap solitons are subject to slowly growing
oscillatory instabilities unless the photonic lattice is very
strong. These instabilities lead to a complete decay of the
original solitons, and a slightly oscillating, stable fundamen-
tal mode in the semi-infinite gap remains.

We also obtained oscillatory instabilities for self-
defocusing solitons, but in the first gap the corresponding
regimes are only marginal in the parameter space. The struc-
ture of the solitons is not destroyed, but starts to oscillate,

and the propagation constant is shifted towards the stable
regime.

We found that these results hold qualitatively both for 1D
and for 2D systems, and they are not limited to photorefrac-
tive nonlinearities. Solitons in higher order gaps are also sub-
ject to oscillatory instabilities, and their decay usually leads
to a stable, slightly oscillating fundamental mode in the
lowest-possible gap �i.e., the semi-infinite one for focusing
and the first one for defocusing nonlinearities�.
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